Enviropedia
Climate Change
Global Warming
Ozone
Air Pollution
Weather & Climate
Sustainability
Kids
INFORMATION
Acid Rain
Air Quality
Atmosphere
Climate
Climate Change
Global Warming
Ozone Depletion
Sustainability
Weather
LINKS
photo link on this page

Trees

Acid rain can have serious impacts on trees and forests. Acid rain does not usually kill trees directly. Instead, it is more likely to weaken them by damaging their leaves, limiting the nutrients available to them, or poisoning them with toxic substances slowly released from the soil. The main atmospheric pollutants that affect trees are nitrates and sulphates. Forest decline is often the first sign that trees are in trouble due to air pollution.

Scientists believe that acidic water dissolves the nutrients and helpful minerals in the soil and then washes them away before the trees and other plants can use them to grow. At the same time, the acid rain causes the release of toxic substances such as aluminium into the soil. These are very harmful to trees and plants, even if contact is limited.

Forests in high mountain regions receive additional acid from the acidic clouds and fog that often surround them. These clouds and fog are often more acidic than rainfall. When leaves are frequently bathed in this acid fog, their protective waxy coating can wear away. The loss of the coating damages the leaves and creates brown spots. Leaves turn the energy in sunlight into food for growth. This process is called photosynthesis. When leaves are damaged, they cannot produce enough food energy for the tree to remain healthy. Once trees are weak, diseases or insects that ultimately kill them can more easily attack them. Weakened trees may also become injured more easily by cold weather.

While forestry has long been considered to be adversely affected by acid rain, recent studies show it to be part of the acidifying process. The rough canopies of mature evergreen forests are efficient scavengers of particulate and gaseous contaminants in polluted air. This results in a more acidic deposition under the forest canopies than in open land. Chemical processes at the roots of trees, evergreens in particular, further acidify the soil and soil water in forest catchments. When the forests are located on low-alkaline soils, these processes can lead to a significant acidification of the run-off water and consequent damage to associated streams and lakes.

Tree damage